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Abstract-Buoyancy-driven convection in a differentially heated vertical porous layer is studied 
theoretically by the method developed by Gill [5]. The model is of finite extent, and the temperature 
difference between the vertical walls is assumed to be large. Satisfactory agreement with experiment has 
been obtained for theinterior temperaturedistribution and the Nusselt number. The applied method is also 
extended to include some effects of a variable viscosity. This is shown to introduce asymmetry into the 

solutions. 

NOMENCLATURE 

f;, width of model; 

H, height of model; 

a, characteristic grain diameter; 

k, permeability of porous medium; 

9, acceleration of gravity; 
x., y,, z., Cartesian coordinates; 
v*, (= u*, w.), two-dimensional velocity vector; 
T*, temperature; 
AT, dimensional temperature difference between 

the vertical walls; 

J-*9 (= v */I+), defined by (2.8); 

To> dimensionless temperature in the core; 
s, 4, defined by (3.7); 
Re, Reynolds number; 
pr, Prandtl number, = v&c,,,; 
Pe, Peclet number, = PrRe; 

Ra, Rayleigh number, = kgyi?TL/rc, v,; 

Nu, Nusselt number. 

Greek symbols 

dimensionless temperature gradient; 
coefficient of volume expansion; 
defined by (2.5); 
defined by (2.7); 
thermal diffusivity; 
defined by (3.3); 
kinematic viscosity; 
reference viscosity; 
viscosities at the hot and cold wall, 
respectively; 
defined by (3.6); 
stream function; 
dimensionless stream function in the core. 

Subscripts 
* 3 dimensional quantities; 

m, solid-fluid mixture; 

A, average values. 

Superscripts 

I, -, 
derivation with respect to z&/H; 

denotes left- and right-hand boundary layer, 
respectively. 

1. INTRODUCTION 

IT IS well known that an appreciable insulating effect 
may be achieved by placing a porous material (fibre 
glass, say) in the unventilated gap between vertical 
walls. This is due to the fact that multi-cellular convec- 
tion does not occur in this case, as shown theoretically 
by Gill [l] for a porous slab of infinite height. Also for 
a slab of finite height, observations indicate a uni- 
cellular motion (Klarsfeld [2], Bories and Combarnous 
[3]), and so does the analysis by Chan et al. [4]. 
Observations further show that when the temperature 
difference between the walls, or eq~valently, the 
Rayleigh number, is sufficiently increased, the basic 
flow exhibits boundary-layer character. Distinct 
thermal boundary layers develop along the vertical 
walls, while the core-region is characterized by a 
positive vertical temperature gradient. 

In the present paper this boundary-layer flow is 
studied. The applied method is similar to that deve- 
loped by Gill [S] for the analogous fluid problem. 
In the present study the method is extended to 
include some effects of a variable kinematic viscosity. 
This is motivated by the fact that I’ in practise may 
vary considerably due to the large values of AT often 
involved in this type of flow. 
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2. GOVERNING EQU.iTIONS 

Consider natural convection in an enclosed porous 
medium with rectangular. impermeable boundaries. I, 
and H are the width and the height, respectively. of the 
model (Fig. 1). The depth, in the _)‘*-direction, is 
infinite. The vertical walls are taken to be perfect heat 

conductors and maintained at the temperatures AT/2 

and -AT,% respectively, while the horizontal end- 

walls are insulating. 

dr,/az,=o 

r, =1/2 AT 

-1/2L 

_ _ 
dc Id&= 0 

The porous model 

r,=-v2Ar 

l/2 L 

FIG. 1 

Making the Boussinesq approximation. the equa- 
tions of vorticity, heat and continuity for stationary 
two-dimensional motion can be stated as follows. 

respectively 

(2.1) 

(2.2) 

(2.3) 

where we have allowed for a variable viscosity in 
(2.1). This is relevant, since in practice the viscosity may 

vary rapidly with temperature. 
Introducing the stream function +, by LI. = - ?$,,Ii)z* 

and W. = a$./ax,, a balance in (2.2) between convec- 

tion and conduction in the boundary layers requires 

that 

ICI. - K,,, H/6 (2.4) 

where 6 is the thickness of the boundary layers at 
the vertical walls. From (2.1) a balance between 
buoyancy and vorticity yields 

62 - Hv, q,JkgyAT (3.5) 

where v, is a reference viscosity. 

Wt.HtK 

Boundary-layer variables are detined by taking 
ci = (Hv,~,l’li~j’AT)‘~‘. H, AT. K, H ‘2 as scales of 
horizontal length. vertical length. temperature and 

stream function. respectively. These scales are also 
assumed to be characteristic for the motion in the core. 

except that the horizontal length is taken to be the 
width L. Requiring that 6 <( L and (i << H’;L, it follows 
analogously to Gill [5] that. as a first approximation. 

the temperature and the stream function in the core 

can be written 

T= To(z) 

i = *“(=I. 
(2.6) 

Defining boundary-layer variables by 

T = T,(z) + 0(.x, z) 

IL = li/o(=)+~(s,4 
(2.7) 

where 0.~ -10 as .Y -+ ~8. the approximate forms of 
(2.1)-(2.3) valid in the boundary layers may be written 

,f *I(. = 0 (2.8) 

*I& + H.T. = n,, (2.9) 

u = -r/&-r\,, N’ = *‘IX (2.10) 

wheref’ = ~I’/v~, and the plus and minus signs corres- 
pond to the left- and right-hand boundary layers, 

respectively. 

3. METHOD OF SOLUTION 

The nonlinear system (2.8)-(2.10) will be solved by 
the modified Oseen technique developed by Gill [5]. 

Essentially, this means that u and T_ in (2.9) are 

replaced by average values 14~ (2) and Ti (2). When the 
viscosity is constant, i.e. f = 1. the solutions exhibit 

centro-symmetrical properties, and hence only one 
boundary layer needs to be considered. In this case 
the analysis is quite similar to Gill’s for infinite 

Prandtl number. It is in fact simpler, since -M‘,~, in 
the vorticity equation now, due to Darcy’s law, is 
replaced by 1~. Also the results show qualitatively the 
same behavior, see Figs. 225 (solid lines). 

When the viscosity variation is taken into account, 
the results do not follow so readily. We therefore give 

some main steps in the analysis. In this case there 
is no centro-symmetry, and both boundary layers must 
be considered. An Oseen approximation of the vorticity 
equation is achieved by replacingf‘ = v’/v, by an average 
valuef, (z). Substituting the average values 11.~. 7” and 
& into (2.8) and (2.9), we finally obtain 

(3.1) 

(3.2) 
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FIG. 2. The temperature T,(z) in the core. The 
solid line corresponds to constant viscosity, 
5 = 0, while the broken line is for 5 = 0.25, 
i.e. v2 = 3~~. The experimental points are from 
Klarsfeld [2] (Fig. ll(E1O) where Ra = 1298 
and H/L = 2.25). Here the variation of v is not 

significant (less than 10 per cent). 

z 
FIG. 3. The stream function $c(z) for the core. 
Solid and broken lines correspond to 5 = 0 

and 5 = 0.25, respectively. 

W- 

W' 

FIG. 4. Vertical velocities at (a) 
the left-hand wall, w+, and (b) the 
right-hand wall, 6. Solid and 
broken lines correspond to 5 = 0 

and < = 0.25, respectively. 

FIG. 5. Boundary-layer thicknesses 
at (a) the left-hand wall, l/i’. and 
(b) the right-hand wall, l/1-. Solid 
and broken lines correspond to 

5 = 0 and 5 = 025. respectively. 

where 

L = -~(+u,)+QJ(u;;+4TA/~~) (3.3) 

Here uA, T; are related to the core values -I/.&, Td 
through conditions obtained by integrating the con- 

tinuity and heat equations (2.10) and (2.9) across the 
boundary layers. By aid of (3.1) and (3.2), this gives 

$(lfi) = - 2x 
-7 0 

(3.4) 

(3.5) 

where a plus-minus superscript also should be under- 
stood in 1. 

To solve (3.4) and (3.5) we must assume a relation 
between the temperature and the viscosity. When the 
temperature varies considerably, it is not possible to 
derive any simple general relationship between T. and v. 

To retain some general effects of a variable viscosity, 
and still have a tractable mathematical problem, we 
have to make some simplifying assumptions. Accord- 
ingly we take the viscosity to vary linearly over the 
boundary layers, and to be independent of height. If 

vr and v2 are the viscosities at the hot and cold wall, 

respectively, and v, = (v, + vz)/2 is the mean viscosity, 
we obtain 

fA’ = Va+/& = 1-c 

fi = vi/v, = 1+< 
(3.6) 
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where layer, our analysis for constant viscosity gives the value 

v, - \‘I 
0.67. The experiment plotted in Fig. 2 gives approxi- 

< = ) ---_, 
Y? + 1’1 

matelyb = 0.69. For comparison we mention that Hart 
[6] has measured a gradient of 0.62 for the similar 

Introducing (3.6) into (3.3). and defining new problem in a fluid layer. 

variables by The value of the stream function $. in the core is 

s = 1++i- 
plotted in Fig. 3. Introducing the horizontal core 

q = (i- -i.+)/s. 
(3.7) velocity no = -I& we see that most of the mass flux 

across the core takes place near the upper and lower 

(3.4) and (3.5) yield four relations involving To. $,. s boundaries, This is in accordance with the observations 

and q. These finally reduce to in [2]. At the horizontal boundaries ua tends to infinity, 

~o=gs 
and so does also the temperature gradient (Fig. 2). 

l+tq 
(3.8) This occurs. as pointed out by Gill, because the effect of 

boundary layers on the horizontal end-walls have been 

l-q' neglected. In practice, then, diffusion will limit the 
*o = Cl ___ 

I +i:q 
(3.9) velocity and the temperature gradient in these regions. 

In Fig. 4 the vertical velocities IV+ and M- at the 
and left- and right-hand walls respectively, are plotted as 

$=i[:-+qz --[L$Jln(l+<q)]+C1 (3.10) 
functions of 2. In Fig. 5 a similar plot is done for the 

boundary-layer thicknesses l/j”’ and l/i.-. We observe 
that a variable viscosity results in a higher velocity and 

where Ci and Cz are constants of integration. Actually a thinner boundary layer at the hot wall, and vice versa 

these should have been determined by matching with at the cold wall. This conforms to the observations by 

the solutions valid in the horizontal boundary layers. Elder [7] in a fluid slot. 

However, effects due to their presence are neglected in The heat transfer across the layer may be expressed 

this analysis. Analogous to Gill [5], we then take the by the Nusselt number 

inner solution to be valid at the horizontal end-walls, 
i.e. tjo( +f) = 0. From (3.9) this implies that q(z = ki) = Nzr = -~ (4.1) 
+l, which enables us to determine C, and Cz from 

(3.10). which is the ratio of the total heat transport to the 

Finally we mention that the solutions have heat transferred by pure conduction. For constant 

singularities in the corners ( -fL, -@il) and (=&,iH). viscosity, the integration yields 

This is analogous to the result in [5]. 
RU'.'2. (4.2) 

4. RESULTS AND DISCtiSSlON Bories and Combarnous [3] report an empirical 
In Figs, 2-5 To. $. etc. are shown as functions of c. formula for the Nusselt number in a vertical layer 

For constant viscosity, 5 = 0 (solid lines), the solutions involving L/H (in our notation) and Ra to the powers 
exhibit centro-symmetrical properties. which is in of 0.397 and 0.625, respectively, including all their 
accordance with the system of equations and boundary experiments. However, only for their last run (Ra = 520) 
conditions for that particular case. The broken lines in the flow exhibited boundary-layer character. Accord- 
Figs. 2-5 correspond to < = 025. which means that the 
viscosity increases by a factor 3 from the hot to the 

ingly the proposed formula cannot be valid in the limit 

cold wall. The figures clearly show that a variable 11 
of large Ra. It seems plausible then, as the Rayleigh 
number increases, that both exponents should tend to 

introduces asymmetry into the solutions, as suggested 0.5 as a limit. 
by Gill. 

From Fig. 2 we observe that the interior temperature 
It may also be worth mentioning that by assuming 

distribution is close to a straight line in the central 
a constant vertical temperature gradient p in the whole 
layer, as in [6] or [7], we easily derive that 

part of the layer. The plotted points are experimental 
values taken from Klarsfeld [2] using chlorobenzene <Vlr = &j!‘!2Ra’:2 (4.3) 
as saturating fluid. The variation of v is not significant 
in his experiment, being less than 10 per cent over the when PRa is large. Taking now p cc L/H in the 

layer. It is seen that the theoretical curve corresponding asymptotic case, we arrive at a formula similar to 

to constant viscosity agrees well with the experiments. (4.2). 
For the temperature gradient /? in the middle of the Finally, we emphasize that the assumption (3.6) for 
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the viscosity is rather crude. When relevant experi- Here the characteristic velocity in the definitions of Re 

mental data becomes available, such that real com- and Pe has been chosen as the maximum vertical 

parisons can be made, a more realistic viscosity varia- velocity for z = 0. 
tion should possibly be applied in (3.4)-(3.5). _ 

Before closing, it should be noted that several 
conditions must be satisfied to assure the validity of 
the present analysis. Firstly, the boundary-layer thick- 1. 

ness must be much smaller than the horizontal and 

vertical extent of the model, which leads to 2. 

H L2 

!-I 
<< Ra”‘. 

L 
(4.4) 3. 

Secondly, for Darcy’s law to be valid and, at the same 

time, thermal dispersion effects to be neglected, the 

4, 

(grain) Reynolds and Peclet numbers should not exceed 
unity in the boundary layers. Thirdly, the characteristic 5. 
grain diameter must be smaller than the boundary- 
layer thickness. This implies, respectively, that 

6, 

d H 112 

i) 
1. 

t 
< 2PrRa-‘, 2Ra-‘, ~ 

L 
Ram “‘. (4.5) 
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